Skip to main content

4 posts tagged with "database"

View All Tags
Share

How to Store Vibration Sensor Data | ReductStore vs InfluxDB

· 10 min read
Anthony Cavin
Data Scientist - ML/AI, Python, TypeScript

Benchmark Results

In How to Store Vibration Sensor Data | Part 1, we discussed the importance of efficiently storing both raw vibration data and pre-processed metrics, and the benefits of using time-series databases such as ReductStore. We explored best practices for setting up a time-series database and implementing data retention policies to effectively manage high-frequency sensor data.

In How to Store Vibration Sensor Data | Part 2, we provided a practical example of how to use ReductStore to store and query vibration sensor readings. We also showed how to store vibration sensor values in 1-second chunks, each packaged as binary data, to optimize the storage process when dealing with high-frequency data such as vibration or acoustic measurements.

In this post, we compare ReductStore and InfluxDB in a real-world benchmark scenario, focusing on their write and read performance for high-frequency sensor data. We show how ReductStore's binary storage provides superior efficiency and scalability over InfluxDB when handling large volumes of unstructured time-series data.

The benchmark was run on an SSD drive, but results may vary depending on hardware configuration and database settings; to explore how it performs on your setup, you can run the benchmark yourself using the Reduct Vibration Example repository on GitHub.

Share

How to Store Vibration Sensor Data | Part 2

· 9 min read
Anthony Cavin
Data Scientist - ML/AI, Python, TypeScript

Vibration Data Flow

ReductStore is designed to efficiently handle time series unstructured data, making it an excellent choice for storing high frequency vibration sensor measurements. This article is the second part of How to Store Vibration Sensor Data | Part 1, where we discussed the benefits of storing both raw measures and pre-processed metrics, the advantages of time series databases, and efficient storage and replication strategies.

In this post, we'll dive into a practical example of storing and querying vibration sensor readings using ReductStore and Python. To follow along, you can find the full source code for this example at GitHub's reduct-vibration-example repository.

Our example will show you how to:

  1. Store simulated sensor values in 1-second chunks
  2. Compute and store associated labels for each chunk
  3. Query and retrieve stored measurements within a specified time range
  4. Set up replication using the ReductStore web console
Share

How to Store Vibration Sensor Data | Part 1

· 8 min read
Anthony Cavin
Data Scientist - ML/AI, Python, TypeScript

Vibration Data Flow Intro

Efficient and effective storage of vibration data is important to a wide range of industries, particularly where accurate and complex predictive maintenance or optimization is required.

This blog post looks at best practices for managing vibration data, starting with storing both raw and pre-processed metrics to take advantage of their unique benefits. We'll explore the differences between time series object stores and traditional time series databases, and highlight optimal data flow processes.

We'll also cover strategies for eliminating data loss through volume-based retention policies, guide you through setting up an effective data retention frameworks.