Skip to main content

ReductStore v1.13.0 Released With New Conditional Query API

· 4 min read
Alexey Timin
Software Engineer - Database, Rust, C++

We are pleased to announce the release of the latest minor version of ReductStore, 1.13.0. ReductStore is a time series database designed for storing and managing large amounts of blob data.

To download the latest released version, please visit our Download Page.

What's new in 1.13.0?

This release introduces a new conditional query API that should significantly improve your experience when querying or removing records. The new conditional queries allow you to use logical and comparison operators to filter records by labels. Previously, you could only filter records by labels using the include and exclude options, which were limited to exact matches. This means that you had to classify your records in advance at the ingest stage to be able to filter them later. Now, all you have to do is label your records with metric labels and then use the conditional queries to filter them by any condition you want.

How to Store Vibration Sensor Data

· 19 min read
Anthony Cavin
Data Scientist - ML/AI, Python, TypeScript

Vibration Data Flow Intro

This is a complete guide to storing vibration sensor data efficiently and effectively. We'll cover everything from the basics of vibration data to best practices for managing it as well as setting up a robust and scalable environment to store, query, and replicate vibration sensor data.

Vibration data is typically collected from sensors attached to machinery or equipment to monitor its health and performance. This data can be used to detect anomalies, predict failures, and optimize maintenance schedules.

However, effectively managing vibration data can be challenging due to its high frequency, large volume, and complex nature. To address these challenges, we must implement efficient storage strategies that balance data retention with storage constraints.

After covering the basics of vibration data, we'll explore the best practices for managing this data, including storing both raw and pre-processed metrics to take advantage of their benefits. We'll also look at the differences between traditional time series databases and a time series object store such as ReductStore, which is designed to efficiently handle time series unstructured data, making it an excellent choice for storing high-frequency vibration sensor measurements.

We'll then cover a real-world example of storing vibration sensor data using Python and ReductStore. This example will show you step-by-step how to store raw sensor data, calculate key metrics, and query and retrieve this data for analysis.

Finally, we'll discuss strategies for preventing data loss through volume-based retention policies and automated replication to ensure that valuable information is always available for diagnosis and analysis.

MongoDB vs ReductStore: Choosing the Right Database for Robotics Applications

· 9 min read
Gracija Nikolovska
Software Developer - C#, Python, ROS

Introduction Diagram

Robotics applications generate and process a wide variety of data, such as sensor readings, video streams, logs, and AI model outputs. Managing this data efficiently is crucial because it affects the performance, scalability, and reliability of the entire system.

In this article, we'll compare ReductStore and MongoDB, two databases designed to handle different aspects of data management. ReductStore is a time-series blob storage solution optimized for managing large amounts of data coming from continuous streams. MongoDB, on the other hand, is a popular NoSQL database known for its flexibility, scalability, and support for unstructured and semi-structured data.

By understanding the strengths and limitations of each, you can make an informed decision to meet your project's specific data needs.