Skip to main content

26 posts tagged with "tutorials"

View All Tags

Building a Resilient ReductStore Deployment with NGINX

· 4 min read
Alexey Timin
Software Engineer - Database, Rust, C++

If you’re collecting high-rate sensor or video data at the edge and need zero-downtime ingestion and fault-tolerant querying, an active–active ReductStore setup fronted by NGINX is a clean, practical pattern.

This tutorial walks you through the reference implementation, explains the architecture, and shows production-grade NGINX snippets you can adapt.

What We’ll Build

We’ll set up a ReductStore cluster with NGINX as a reverse proxy, separating the ingress and egress layers. This architecture allows for independent scaling of write and read workloads, ensuring high availability and performance.

NGINX Resilient Deployment

3 Ways to Store Computer Vision Data

· 9 min read
Alexey Timin
Software Engineer - Database, Rust, C++

When building computer vision systems, efficient data storage is a fundamental requirement. Whether you're capturing images for training, storing inference results for validation, or archiving sensor data for future analysis, your storage solution must be both reliable and high-performance.

Ingestion speed is especially critical. If your system can’t write data fast enough — whether it’s high-frequency frames or accompanying metadata — you risk losing valuable information or creating bottlenecks in the pipeline.

In this post, we’ll look at three common approaches to storing data in computer vision applications: a traditional file system, S3-compatible object storage, and ReductStore, a time-series-optimized blob storage. We’ll explore the strengths and limitations of each approach to help you choose the best fit for your application.

A Simple Computer Vision Application

For demonstration purposes, we’ll use a simple computer vision (CV) application which is connected to a CV camera and runs on an edge device:

Computer Vision Application

The camera driver captures images from the CV camera every second and forwards them to the model, which then detects objects and displays the results in the user interface.

Your images and results need to be stored for training and validation purposes. The customer may also wish to view images featuring anomalous objects. These requirements present the challenge of maintaining a history of blob or unstructured data.

How to Store and Manage ROS Data

· 23 min read
Anthony Cavin
Data Scientist - ML/AI, Python, TypeScript

 

At ReductStore, we specialize in the high-performance storage and streaming of robotics data from edge devices to the cloud. In this tutorial, we will demonstrate how to develop a robust ROS 2 data logging pipeline for practical robotics applications.

First, we will set up a Raspberry Pi with a USB camera running a lightweight YOLOv5n object detection model via ONNX Runtime. Then, a recorder node will capture selected ROS 2 topics, including images, detection results, and logs. Next, these topics will be saved as segmented MCAP files locally with ReductStore. Finally, we will configure automatic replication to stream data to another ReductStore instance.

This minimal setup shows how to efficiently capture, store, and replicate ROS 2 data from a robot to a central server or cloud instance. These techniques can be applied to any ROS 2 system, whether it's a single robot or a fleet of autonomous systems.

Let's get started!